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Abstract. We consider a class of processes on an infinite one-dimensional lattice wherein 
sites transform irreversibly from vacant to occupied. The transformation rates, p (  I ,  r ) ,  
depend only on the distances, I and r, to the nearest occupied sites (or particles) on the 
left and right, respectively. We show that the kinetics can be determined exactly, when 
p ( I ,  r )  is independent of I or r >  R ,  from a truncated set of 2 R  rate equations. These 
solvable models can be extended to include simultaneous transformation of strings of N 
adjacent sites. One can thus generate a general class of continuum cooperative car-parking 
problems as the N + CC limit of a class soluable lattice model. 

We consider translationally invariant processes on an infinite one-dimensional lattice 
wherein sites transform irreversibly from state 0 (vacant) to 1 (occupied), at rates 
depending on their ‘local’ environment. Henceforth occupied sites will also be referred 
to as ‘particles’. I f  the rates depend only on the state of sites within R lattice vectors 
of the one being ‘filled’, then the process is said to have range-R cooperativity. If 
particles within B lattice vectors of a vacant site block filling, then the process is said 
to incorporate range-B blocking. 

Such models have been invoked extensively in the analysis of the kinetics of 
irreversible cooperative reactions on polymer chains [ 11. Exact kinetics were obtained 
for the case of range 1 cooperativity in the early 1960s [2], for range B + 1 cooperativity 
incorporating range B blocking in the 1970s [3,4], and most recently for range 2B-t 1 
cooperativity incorporating range B blocking [ 5 ] .  In all these cases, one obtains an 
infinite hierarchy of rate equations for probabilities, P,, of n-tuples of vacant sites. 
Exact solution then follows from truncation utilising a general Markov-type shielding 
property of strings of 2R-vacant sites [5]. The simplest case not amenable to exact 
analysis is that of general range-2 cooperative effects [6]. 

We now introduce a somewhat different specification of cooperativity motivated 
by studies of certain ‘interacting particle systems’ [7]. Here the nearest-particle rates, 
p ( $  r ) ,  for filling a vacant site depend only on the distances 1 and r to the nearest 
particles on the left and right, respectively. We shall place specific constraints on the 
p(I ,  r) below. One can immediately write down rate equations for the probabilities, 
P,, of vacant n-tuples in terms of the above rates and the probabilities S,,, = 
P,,, -2P,,,+, + P,+* of finding m-tuples of vacant sites bordered by occupied sites. 
Filling the kth site from the left end of the n-tuple produces a contribution R (  k, n )  to 

n 

-d/dtP,  = R(k, n )  
k = l  

0305-4470/90/112227+04303.50 @ 1990 IOP Publishing Ltd 2227 



2228 J W Evans 

where t denotes time, and 

This rate equation can be rewritten as 

-d /d tP ,  = p(1, r ) P ,  
I + r = n + l  

providing an infinite hierarchy for the P,,, with n 3 1, which is closed in the sense that 
the right-hand sides involve only the P,, and not, e.g., proba,bilities of disconnected 
empty configurations. Note that the number of terms in the inner sum of the second 
term equals ( j i 8 ) n .  Thus it is clear that if p(1, r )  = /3 is constant, then the second 
term vanishes, and -d/dt P,, reduces to nPP,,, as required. 

Henceforth we shall consider only cooperativity of finite range R < X. This implies 
that 

P ( Z X )  for r >  R 
P(S  r )  = P ( a ,  r )  for I >  R (4) 1 P(m,  a) for 1, r > R.  

We shall denote by p s ( l ,  r )  the symmetrised form [ p ( l ,  r ) + p ( r ,  l ) ] , / 2 .  When (4) is 
satisfied, the infinite sum in (3) can always be reduced to a finite sum, terms with 
j > 2R - n vanishing for 1 s n G R, and terms with j > R - 1 vanishing for n > R. The 
specific form of these equations correspondingly depends on the range of n (see the 
appendix). However the essential feature of relevance here is that they achieve the 
generic form 

-d/drP,,= (n - -2R)p(oo ,oo )+2  ps(co, r))P,, i 1 = 1  

R 

+ 2 c [ P ( a ,  a) -A((=, t ) l P n + ,  

It is this generic form which guarantees solutions satisfying 

for n 3 2 R .  
1 = l  

( 5 )  

P 2 R - m  pz R for m a 0  (6) 
= A m  e - m p i x , x i r  

for any fixed A (which physically must satisfy 0 s A S 1). The associated independence 
of P,,+l/P,, = A  e-p'mx.r)r on n, for n 3 2 R ,  is a manifestation of a general shielding 
property of strings of 2R vacant sites [ 5 ] .  The most important consequence of (6) is 
that it allows exact truncation of the infinite hierarchy for the P,,. Thus the kinetics 
of any irreversible process with nearest-particle rates satisfying (4) can be determined 
exactly from the resulting closed set of equations for P,, with 1 s n s 2R. 

To this point we have not discussed explicitly the choice of initial conditions. 
Perhaps the most natural case is where all sites are initially vacant, and thus P,, = 1, 
for n L 1, at t = 0. This corresponds to the choice A = 1 in (6). More generally the 
initial conditions need only be compatible with (6) for some choice of A in order for 
the solution procedure described above to apply. This includes all Mth-order spatially 
Markovian distributions, where M S 2 R .  In fact if M is greater than 2R, but finite, 
then with some refinements it is still possible to obtain exact solutions to the P, 
hierarchy [ 5 ] .  We also note that knowledge of the P,, does not provide complete 
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statistical information about the distribution of vacant and occupied sites. However 
one can continue, using techniques outlined previously [8], to determine by exact 
truncation of the appropriate hierarchical equations, the distribution of n-tuples of 
occupied sites, n-point spatial correlations, etc. 

It is possible to analyse exactly various extensions of the model described above, 
provided one maintains a ‘nearest-particle-type’ prescription of the rates. One such 
extension is to the case where strings of N consecutive sites, rather than single sites, 
are filled simultaneously by ‘N-mers’. Here in the specification of nearest-particle 
rates, p(1, r ) ,  l ( r )  most naturally refers to the distance from the left (right) end of the 
N-mer to the nearest particle on the left (right). Again one obtains an infinite closed 
hierarchy for the P,. For range R cooperative effects, where p(1, r )  satisfy (4), one 
can obtain solutions of the form P, ,+ , /P ,  = A e-p‘x,Jc’‘ , for n 2 2 R  + N - 1, and these 
allow exact truncation of the hierarchy. Solvability of N-mer filling with general range 
N cooperative effects has been noted previously [5], and a detailed analysis sub- 
sequently provided [ 9 ] .  In fact this is just a special case of N-mer filling with 
nearest-particle rates, and is equivalent to filling of single sites with range 2 N  -1 
cooperative effects incorporating range N - 1 blocking. 

It has been noted previously [4,5] that random N-mer filling problems on a lattice, 
as N + CO, become the continuum random ‘car-parking problem’, wherein non-overlap- 
ping unit intervals are randomly placed on the line [ 101. This motivates consideration 
of special ‘scaled’ nearest-particle rates for N-mer filling which satisfy 

( 7 )  P ( 4  r )  = & / N ,  r / W .  

Then, as N + CO, this cooperative *N-mer filling problem becomes a cooperative car- 
parkingproblem wherein the rate, p ( ~ - ,  x + ) ,  for filling a vacant unit interval depends 
on the distance x -  (x+) from the left (right) end of this interval to the nearest filled 
point on the left (right). This connection is hardly surprising as it is the natural 
extension of that for the random case. However what is remarkable and significant is 
that the kinetics of a broad new class of cooperative car-parking problems with finite 
range k cooperativity (i.e. where p * ( x - , x + )  is independent of the value of x -  or 
x +  > fi) can be obtained from the limit of a sequence of exactly solvable N-mer filling 
problems with finite range R = N k  cooperativity, as N + W .  While this provides a 
well controlled calculational procedure already exploited for the random case [4], we 
note that it is also possible to directly analyse exactly these cooperative continuum 
problems via an integro-differential equation formalism mimicking the infinite P,- 
hierarchy (cf [ 113). To solv: these equations, one can exploit a shielding property of 
vacant intervals of length 2 R  + 1. The details will be presented elsewhere [ 121. 

Another extension of the basic model is to the case of ‘competitive transformation’. 
A particularly simple extension is to the case of filling of N-mers with a prescribed 
range of sizes (and rates), but where all filled sites have the same state 1. An exact 
analysis of such models has been given for random filling and range 1 cooperativity 
[13]. A more complicated extension is to the case of competitive transformation of 
sites from state 0 to several states 1, 2 , .  . . (which could correspond to competitive 
filling of N-mers of different ‘types’ and possibly sizes). Again, previous exact analysis 
of these models is available for range 1 cooperativity [ 141. It should now be clear that 
exact analysis of all these problems is possible for general classes of nearest-particle 
rates with finite range cooperativity. 

In summary, we have presented a new very general class of solvable irreversible 
cooperative processes on an infinite one-dimensional lattice. Connection is also made 



2230 J W Evans 

with a corresponding new class of solvable continuum cooperative car-parking 
problems. 
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Appendix 

The specific form of the P,-equations ( 3 )  for range R cooperativity is elucidated by 
identifying and simplifying all terms on the RHS containing p(  1, r )  with 1 or r > R. For 
1 s n s R, these reduce to 

2 

For R < n  = R + m < 2 R ,  the contribution from the first term of ( 3 )  becomes 
2 

R I  

C (-1)' min(n, t - S ) P , ( a ,  t - S)PR+,  + n [ p ( a ,  a) -2pS(03, R)]PZR+l. 
1 = l  s=o 

P 5 ( q  t )P , ,  and that from the second becomes 
R - m  

2 C [ ( k + l ) ~ , ( a ,  m + k ) - ( k - 1 ) ~ s ( a ,  m + k - 1 ) - p s ( a ,  k ) I ~ R + m + k  
k = l  

m - l  

+ 2  [ ~ ( a o , a ) - ~ p , ( o o ,  R-m+l+ j ) lPZR+I+j  
j = O  

+ ( R  -m)[P(a, a) - ~ P S ( ~ ,  R)IPZR+I* 
Remaining terms on the RHS of ( 3 )  containing P(1, r )  with 1 or r S  R can be identified 
directly. 
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